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INTRODUCTION

Underwater acoustic propagation in double ducts with associated mode coupling
has potentially useful applications, but before this phenomenon can be properly evalu-
ated, mode theory must be extended into unfamiliar territory. In an effort to analyze
double-duct propagation, a new method of formulating mode properties has been devel-
oped, resulting in canonical eigenvalues. These eigenvalues are valid for classes of sound-
speed profiles rather than for individual sound-speed profiles. The above analysis also
makes frequent reference to the relationships between rays and modes.

Ray theory and mode theory interface in a number of ways, among which are the
WKB (Wentzel, Kramers, and Brillouin) and phase-integral formulations for approxi-
mating eigenvalues. Also group velocities as determined for either rays or modes can be
compared. These alternative points of view are often required in interpreting double-
duct propagation and in developing, implementing, and checking the canonical eigen-
value technique.

This report is the introductory report of a series which describe the canonical
eigenvalue technique, develop equations for mode and phase-integral formulations, de-
termine group velocities, and apply these techniques to single acoustic ducts as well as
double ducts. This introductory report has several goals:

1. To introduce the concept of canonical eigenvalues.

2. To make improvements in the ray-theory approach to the phase-integral
method.

3. To compare double-duct eigenvalues with their single-duct counterparts.

4. To provide a general theoretical background for use in subsequent reports.

The overall goal of this series of reports is to develop improved techniques for
the analysis of eigenvalues in double-duct propagation. The original effort, which
prompted this series, was a study of the coupling characteristics of double ducts. Various
stages of the early work were presented in a series of papers. 1- 4 Three NOSC reports
have also been published. 5 7 Although Ref. 5 on double ducts presents many numerical
results of interest, the mathematical formulation is much too complicated for a theoreti-
cal analysis which could adequately explain the results. Reference 5 describes a five-
layer duct, which involves an eigenvalue matrix of rank nine.

Some simple ducts with eigenvalue matrices of rank two and three were analyzed
next in an endeavor to develop an improved theoretical approach which might eventu-
ally address double ducts. These are the unbounded refractivt. i and the same duct
with a surface boundary. This analysis did indeed develop the , of a new theoretical
approach, which we have chosen to name the canonical eigenvaiu- method. This
development is one of the subjects of the present report.

Reference 6 extends this development of the canonical eigenvalue method to
multilayer profiles and addresses the application of the method to the normalization of
eigenfunctions. Reference 7 presents numerical results of the theory of Ref. 6 as applied
to one-layer bounded-ducts.



This report first presents in Section 1 the general equations of mode theory and
of the ray-theory application of the phase-integral method. The analysis goes beyond that
necessary for simple ducts. For example, the mode-theory equations are used in Ref. 6
for multilayer profiles, and the phase-integral equations are used in the double-duct anal-
ysis of Ref. 5. The major analysis here is contained in Section 2, which compares normal-
mode and phase-integral results for phase and group velocities for three types of simple
ducts and introduces canonical eigenvalues. Section 3 illustrates how the mode solutions
discussed in the previous section can be used in the analysis of the double-duct configu-
ration of Ref. 5. Section 4 develops the concept of canonical eigenvalues as functions of
two mathematical variables as a logical extension of the simple cases of Section 2.
Section 5 presents a summary.

SECTION 1. GENERAL THEORY

SOUND-SPEED PROFILE

The sound speed in each layer of the profile is expressed as

[Ci/C(Z)]2 = 1 - 21,(Z - Zi)/Ci (1)

where Ci, Zi, and -y, are the sound speed, depth, and sound-speed gradient, respectively,
at the top of layer i. The report will only deal with the case of continuous sound speeds
at layer interfaces; i.e., the sound speed at the top of layer i and at the bottom of layer
i - 1 is the same, with a value of C. A useful alternative expression is

[1/C(Z)]2 = 1/Cr - 2-1i(Z - Zi)/C (2)

From Eq. 1 we determine that

dC/dZ = C3 %C' (3)

thus, if -lio is the slope at the bottom of layer i

"io = C3
1 "liq/C3 (4)

Let the number of profile layers be I. In some cases layer I will be an ur'Uunded
half space. It is of interest to determine the limits of C as Z increases without bound.
Consider first the case of -", positive. Here C increases monotonically from C, to an
infinite value at

Z = Z, + C,1/2y, (5)

For values of Z greater than this value, the sound speed turns pure imaginary. When 1yt
is negative, C decreases monotonically from C and approaches zero asymptotically as Z
goes to infinity.
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In the special case of an unbounded refractive duct, we must consider the limit

of C in layer 1 as Z goes to minus infinity. The counterpart of Eq. 5 is

Z = Z 2 + C2/2-110  (6)

Here Z 2 is the axial depth, C2 is the axial souald speed, and -yl is the gradient at the
bottom of layer 1. The subscript 2 in Eq. 6 on Z and C is consistent with evaluation at
the bottom of layer 1.

NORMAL-MODE FORMULATION

In the treatment to follow, we assume that the density is constant. For the
sound-speed profile of Eq. 1, the unnormalized depth function in layer i may be written
as

F,(Z) = Di Ai(- ,) + E B,(- ,) (7)

Here D and Ei are coefficients which are independent of Z, Ai and Bi are the
Airy functions, and i is given by

i( = [a~l(Z - Z,) + W2 C0 - (8)

In Eq. 8

ai = -2 -yi w2/Ci' (9)

The quantity .,, is known by several names, viz, the mode wave number, the
mode eigenvalue, and the separation constant. The boundary conditions and the inter-
face-matching conditions form a system of homogeneous linear equations in the coeffi-
cients D and E,. The number of equations is equal to the number of D, plus the number
of E i. This system of equations has a nontrivial solution (nonzero) if and only if the
determinant of the coefficient matrix of the D, and E is zero. This determinant set to
zero is the eigenvalue equation. The ,, are the values of mode wave number for which
the determinant is zero.

Equation 8 may be expressed in terms of C rather than Z:

) = (WC 2 
- (10)

Equation 10 follows from Eq. 2, 8, and 9.

The mode phase velocity is somewhat easier to interpret and analyze than the
mode wave number. The mode phase velocity is given by

Cp = (11)

With the use of Eq. 9 and 11, Eq. 10 may be expressed as

ic = [1 - (ClC,)2] (C,/C)2 I 1-2/ 12/3 f 2/3  (12)
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The phase velocity depends on mode number, as do Di, E, F, and ,. One might
then consider designating the mode number by the use of double subscripts on these
quantities. This will not be done since it is too cumbersome and not particularly helpful.
We will make it clear when it becomes important to distinguish results for various
modes.

In setting up the interface and boundary conditions, it is necessary to evaluate
j(Z) at the upper and lower interfaces of the layer. We define the value at the upper

interface as il- ,(Zi) =  i(Ci)• Equation 12 becomes

,, = [1 - (C,/CP)2] W2/3f 2/3 i1, l 213  (13)

Similarly, we define the value at the lower interface as

',o = i'(Z,.,) = -,c,. ,)

With the use of Eq. 4, we find that Eq. 12 becomes

io = [1 - (C,+1/CP) 2I 7i/3f 2 3 iJYo 1-2/3  (14)

The interface condition at interface i + 1 requires evaluations of ,o and also of
j+jx - i+,(Zi+j) =  +,~(C+l)• Here we find that Eq. 13 becomes

= [1 - (C+.1 C )2] I/r3f 2/ 3 Iy,+, 1-2\3 (15)

We now introduce the gradient ratio as defined by

pi = (-'/1.'l,+)1 3  (16)

It follows then that

i i= o (17)

We are now ready to deal with interface conditions. At layer interface i + 1 the

continuity of pressure leads to

Di Ai(- io) + E B(-q )

-D,+1 Ai(-p , ) - E, 1 Bi(-p? ,O) = 0 (18)

The continuity of dF/dZ leads to

D, a, Ai'(- io) + E, a, Bi'(- 1o)

-D+ I ai. IAi'(-p? o) - Ei+I ai+, 1Bi'(-p2 /o) = 0 (19)
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From Eq. 4 and Eq. 9, we note that

ai = -21/o w2/C+ (20)
It follows that

a,+, = 'Y _-p73 a (21)

With the use of Eq. 19, Eq. 21 may be simplified to

D, p, Ai' (-ro) + Eip Bi' (- o)

D+ 1 Ai'(-piko) + E, 1 Bi'(-p /) = 0 (22)

Consider now various boundary conditions. For a free surface

D, Ai(- j) + Ei Bi(- 11) = 0 (23)

For a rigid bottom at interface I + 1

DAi'(- 1o) + E, Bi'(-o10) = 0 (24)

In Eq. 24, we have cancelled a common factor of a,.

Consider cases where the last layer is an unbounded half space. In the case of a
single layer profile with -y1 > 0, Eq. 23 reduces to

Ai(- j) = 0 (25)

If we consider the surface to be rigid rather than free, the counterpart of Eq. 25 is

Ai'(-,11) = 0 (26)

For the case where layer I + 1 is an unbounded half space with 'Y.,, > 0, E1, 1 is zero in
Eq. 18 and 22.

The boundary conditions become more complicated when the gradient at the top
of the last layer is negative. Here the solution in the last layer is given as

F(Z) = D, h(f;) (27)

where h2 is the modified Hankel function of order one third and represents a down-
going acoustic wave. The solution of Eq. 7 is still valid since h 2 can be expressed as a
linear combination of Ai and Bi with complex coefficients. However, Eq. 27 is a clearer
representation. The counterparts of Eq. 25 and 26 are

h2( 11) = 0 (28)
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and

h 2 '('11) = 0 (29)

These single-layer cases are of only passing interest here because the mode eigenvalues
have large imaginary components and are severely damped.

Of somewhat more interest is where layer I + 1 is an unbounded half space.
Here, for certain duct configurations as treated in Ref. 1 to 3 and Ref. 5, there are low-
order modes for which the imaginary eigenvalue components can be small enough to be
ignored. Here, E, + 1 is zero in Eq. 18 and 22, Ai is replaced by h 2 in Eq. 18, and Ai' is
replaced by h2 ' in Eq. 22.

A further case of interest is the unbounded refractive duct, which consists of two
unbounded half spaces. Here, both E1 and E 2 of Eq. 7 are zero, Eq. 18 reduces to

Dri( - DAi(-po) = 0 (30)

and Eq. 22 reduces to

Djpr1 i'(- 10) - D2 Ai'(-p51 0 ) = 0 (31)

The group velocity is useful in the analysis of double-duct propagation. The
group velocity of mode theory is given by

Cg l/(dd lw ) = (32)

An exact method for evaluating Eq. 32 for large eigenvalue matrices is presented in
Ref. 8. The group velocity can be expressed in terms of the phase velocity with the use
of Eq. 11 and 32 as

Cg = C,[1 -f(dCp/df)/CP] (33)

PHASE-INTEGRAL METHOD

The implementation of the phase-integral method, used in this report is given by

27rf(T - R/C.) = Eb + E, + (n - 1)27r (34)

Here, is the ray cycle range, " is the associated travel time, and Cm is the ray para-
meter. The quantities Eb and E are phase shifts associated with the lower and upper
boundary conditions. For reflection from a free boundary, E, or Eb = 0. For reflection
from a rigid boundary, E. or Eb = 7. If the ray forms in apex or nadir, rather than
reflecting from a boundary, E, or Eb = ir/2. The value of Cm, which satisfies Eq. 34
yields an approximation to the phase velocity of mode n.

A derivation of Eq. 34 is given in Ref. 9, in which Eq. 34 establishes a construc-
tive interference of waves as described by rays. Reference 9 also cites earlier work on
this ray-theory approach. In contrast, when one encounters the phase-integral method in
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the literature, it is usually associated with the WKB method and is not associated with
ray theory per se. Reference 10 provides a thorough treatment in which the WKB
solution is an approximation to mode eigenfunctions; whereas the phase integral, the left
side of Eq. 6.7.12 of Ref. 10, gives the equation for the poles of the WKB approximation,
i.e., the eigenvalues. In further exposition, Ref. 10 relates the WKB approximation to
rays and eventually in Eq. 7.9.14 expresses the phase integral in terms of the cycle range
and cycle time. This example of Ref. 10 is identical to Eq. 34 for E, and Eb = 7r/2.

A further source of confusion is that some authors are not careful to distinguish
between the WKB and phase-integral method but use these terms indiscriminately. For
example, Ref. 11 describes the overall approach as a phase-integral method, reserving
the term WKB for one expression in the approach. In contrast, Ref. 12 on page 90
refers to the WKB error when addressing eigenvalues rather than eigenfunctions. The
present article is concerned only with the ray-theory application of Eq. 34 for approxi-
mating eigenvalues. The authors have no interest in the WKB method for approximat-
ing eigenfunctions.

Equation 34 has been used for many years as a valuable adjunct and guide to
mode theory. For example, Ref. 4 outlines a number of applications of this method,
where the phase and group velocities of various ray theories can be tested by a com-
parison with mode theory. We have encountered various examples in which inexplicable
normal-mode results could be simply explained by their ray-theory counterparts of the
phase-integral method. An example is given in Ref. 13, with results published in more
detail in Ref. 14.

Equation 34 may be written as

T-R/Cm = f -P(n) (35)

where

P(n) = n (36)

for reflection from two free boundaries

P(n) = n - 1/4 (37)

for reflection from one free boundary

P(n) = n - 1/2 (38)

for no boundary reflections

P(n) = n - 3/4 (39)

for reflection from one rigid boundary; and

P(n) = n- 1 (40)

for reflection from two rigid boundaries.

7



We will not deal with Eq. 36 or 40 in this report. However, we digress to point
out a significant result. As we reviewed this material for the final draft, we were puzzled
as to the interpretation of Eq. 40 for n = 1. The day before, we had obtained some
peculiar numerical results for the mode 1 canonical eigenvalues of a duct with two rigid
boundaries. In a rare case of serendipity, these two apparent anomalies resolved each
other. When n = 1, Eq. 35 has no solution. For if the right side is zero, then the group
and phase velocity must be the same for all rays - an impossible situation. The p :oper
interpretation of the result is that mode 1 does not exist for rays which reflect from both
boundaries. The peculiar canonical eigenvalue curves for mode 1 terminated before
entering the regime of phase velocities larger than the larger of the two sound speeds at
the boundaries. These abbreviated curves for mode 1 correspond to the solutions of
Eq. 39, whereas all the other modes have portions that correspond to Eq. 40 as well as
Eq. 39.

We carried this one step further by noting that the solutions of Eq. 35 are the
same for mode n for two free boundaries as they are for mode n + 1 for two rigid
boundaries with the same sound-speed profile. We checked this result against the
canonical eigenvalues for these two boundary conditions and found that these eigen-
values were indeed almost the same. This result, documented in Ref. 6, is another
example of how the phase-integral approach of ray theory complements mode theory.

Our interest here is mainly in cases where Eq. 35 can be solved explicitly for Cm.
However, in many cases this cannot be done. The appropriate treatment is to solve
Eq. 35 by iteration using Newton's method. We express Eq. 35 as

F(Cm) = " - R/C. - f-' P(n) = 0 (41)

Newton's method may be written as

CIO. 1 = Ck - F(Crk)/(aF/aCm)k (42)

where C,, is the result of the kth iteration and Cmk+l is the result of the k + 1 iteration.
From Eq. 58 of Ref. 15, we note that

(aF/aC,.)k = C,,J)/C,,, (43)

Thus, the roots of Eq. 41 are relatively easy to determine by a simple ray theory
program which can evaluate R and T.

The group velocity of ray theory is given by

Cg = R/T (44)

We now examine the relationship between Eq. 44, evaluated at the Cm of Eq. 41, and the
mode group velocity as given by Eq. 33. We first note that

dCm/df = -(aF/af)/(aF/aC) (45)
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where F is given by Eq. 41. If we assume that R, T, and P(n) are independent of f, we
obtain

aF/af = P(n)/f 2  (46)

With the use of Eq. 43, we obtain

dCm/df = -P(n)C2.,/Rf 2  (47)

Substituting Eq. 47 into Eq. 33 with Cm = C, leads to

C9 = Cm/[1 + P(n)Cm/Rf] (48)

We may solve Eq. 41 for T/R to obtain

Cg-1 = TR = Cm-'[1 + P(n)C,/Rf] (49)

Since Eq. 49 is the reciprocal of Eq. 48, we have demonstrated that Eq. 44 gives results
for ray theory which are identical to those of Eq. 33 for mode theory.

Before the alert reader points out some counterexamples to this result, we note
several important assumptions in obtaining this result. The first of these is that
Cm = Cp, i.e., the phase-integral method must give the correct phase velocities of mode
theory. As we shall demonstrate later, in certain cases the phase-integral approach can
be modified so as to be completely congruent with the mode-theory result; i.e., CP = Cm
for all frequencies. Hence, dC,/df = dC,,,/df, and Eq. 33 must give the same result when
evaluated with CP or Cm.

Another important assumption in obtaining Eq. 48 is that R, T, and P(n) are
independent off. The modified ray theory of Ref. 16 and 17 examine cases where R, T,
and the boundary phase shifts are functions of frequency. For these cases, Eq. 46 is no
longer valid. One of the areas of further investigation is to determine the extent to
which the results of modified ray theory and the phase-integral approach agree with the
exact results of mode theory.

Equations 34 to 49 are valid approximations for any profile model. We now
proceed to determine Cm for the profile of Eq. 1. The ray theory solutions for this
model can be obtained from Ref. 18. They are expressed in terms of the parameter b,,
where

bi = -2yC - 3  (50)

Now b, is a constant for a given layer, which is a distinct advantage from a ray theory
standpoint. Equation 50 relates the sound speed at any depth in the layer and the
gradient at that depth to the constant b,. Thus, in some cases one must take care with
the indices in the use of Eq. 50 to replace bi, because at a common interface between
layers there are two values of -ye.
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From Eq. 21 and 22 of Ref. 18, we may write

T - R/Cm (4/3C) E(tan3 
a+1 - tan 3 i)/b i  (51)

Here, bi is the constant for layer i, and the summation extends over all layers from the
surface or ray apex to the ray nadir. This summation is over one-half the ray cycle.
Hence, the coefficient in front of the summation is twice that which appears in Eq. 22 of
Ref. 18. Here

tan 0. = (C 2 
- C/) 1 / 2/Ci (52)

Equation 51 is valid for any multilayered model of the form of Eq. 1. This report will
deal with several simple cases of interest, where Cm can explicitly be solved in closed
form.

SECTION 2. EXAMPLES OF SIMPLE DUCTS

This section deals with the mode and phase-integral solutions of ducts A to C of
Fig. 1. Duct 4 of Fig. 1 is discussed in Section 4. All these ducts have horizontal
asymptotes at the finite values of depth given by Eq. 5. The normal-mode and
phase-integral solutions for ducts A and B and the symmetric form of duct C are well
known. Our purpose in reviewing these ducts is to provide an introduction to the
concept of canonical eigenvalues and to set the stage for the solutions to the asymmetric
form of duct C and to more complicated profiles such as profile 4.

DUCT A DUCT B

C1

C? C2

DUCT C DUCT 4

Figure 1. Schematic ducts of Sections 2 and 4, indicating boundaries and
sound speeds in each layer. Layers are bounded by free or rigid surfaces,
by layer interfaces, or by infinite values of sound speed.
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FREE-BOUNDARY-SURFACE DUCT

Our concern here is a single-layer half space bounded above by a free surface, as
illustrated by profile A in Fig. 1. The parameters of this duct are the surface sound
speed C1 and the surface gradient -11, which in most cases is restricted to be positive.

Mode-Theory Solution

In this case, qn of Eq. 13 is the principal quantity in the solution. At this stage,
we define a dimensionless mathematical variable, x, as

x (53)

This may appear somewhat obtuse. The reason for the use of x is twofold. First, we
simplify the notation. Second, we regard q1 as defined by the right side of Eq. 13; i.e., a
function of the profile parameters, frequency, and phase velocity. On the other hand, we
will regard x as the solution to a purely mathematical problem as defined by the
eigenvalue equation. This is the concept of the canonical eigenvalue approach. The
eigenvalue equation is solved in pure mathematical terms that include x and other
mathematical variables. After the solution has been obtained in the mathematical
variables, we transform the solution into the physical variables of interest. For example,
if we know x, we may use Eq. 13 to obtain the phase velocity

C, = C1 [1 - f- 2/3 7r-2/ 3 1,1112/3 X] - 112  (54)

Equations 53 and 54 will be applied to all canonical eigenvalue problems. We note that
the absolute value signs in Eq. 54 are not necessary for our case of -Y1 > 0. However,
Eq. 54 also applies to other problems where -1, < 0.

From Eq. 25, the solution for the single-layer surface duct with free surface is

Ai(-x) = 0 (55)

The roots of Eq. 55 are the negative of the zeros of the Airy function as given in column
2 of Table III of Ref. 19. Column 2 of Table 1 presents the first ten zeros of Eq. 55,
corresponding to the first ten normal modes.

The solid curves of Fig. 2 present the phase velocity of Eq. 54 for the first four
roots (modes) of Table 1. The solid curves are nearly coincident, in this case, with the
broken-line curves, which will be described later. For illustrative purposes, we have
chosen C1 = 1480 m/s and -11 = 0.02s-1. From Eq. 54, it is evident that CP approaches
C1 as a horizontal asymptote as the frequency is increased to infinity. The curves also
form vertical asymptotes. These asymptotes are given by the zeros of the bracketed
term in Eq. 54. They are

f = ' 1x3121r (56)

The phase velocity turns purely imaginary for frequencies less than that of Eq. 56.
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Table 1. Zeros of Ai(-x) and associated nonintegral mode
number.

Zero
Number Zero Asympt. Modified

j xi Approx. n

1 2.3381 2.3204 1.00867
2 4.0879 4.0818 2.0395
3 5.5206 5.5172 3.00254
4 6.7876 6.7845 4.00187
5 7.9441 7.9425 5.00148
6 9.0227 9.0214 6.00122
7 10.0402 10.0391 7.00104
8 11.0085 11.0007 8.00091
9 11.9360 11.9353 9.00080

10 12.8288 12.8281 10.00072

1492

1490

1488

E 1486

1484

4

1482

1480'
0 300 600 900 1200 1500 1

FREQUENCY (Hz)

Figure 2. Phase velocity vs frequency for free-surface duct, compared for
normal-mode (solid line) and phase-integral (dashed line) computation.
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Since x is independent of frequency, it is relatively easy to obtain an expression
for group velocity. Equation 33 may be evaluated from Eq. 54 and simplified to yield

C, = C, [1 + (C2 - C2)13C2]- (57)

The solid curves of Fig. 3 present the results of Eq. 57. These curves were determined
by evaluating Eq. 54 for a given frequency, evaluating Eq. 57 for this phase velocity, and
plotting the result for the given frequency. From Eq. 57, it is apparent that as the
frequency goes to infinity, Cg, as well as CP, forms a horizontal asymptote at C1. As C,
becomes infinite at the frequency of Eq. 56

Cg -4 0 (58)

For values of frequency less than that of Eq. 56, Cg is purely imaginary.

1492

1490

1488

1486

1484
1484 I 2 3 4

1482

1480L4 300 600 900 1200 1500 1800

FREQUENCY (Hz)

Figure 3. Group velocity vs frequency for free-surface duct, compared for
normal-mode (solid line) and phase-integral (dashed line) computation.
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One may differentiate Eq. 57 with respect to C. and determine that C. forms a

relative maximum at

CP,= 21/2C1  (59)

The value of Cg at this point is

Cg = 3CP /4 (60)

and the frequency is

f = I x3 2 2/ 2/ (61)

Thus far we have considered y, > 0. In the case of -y1 < 0, Eq. 28 applies and
the counterpart to Eq. 55 becomes

h2(x) = 0 (62)

The zeros of this modified Hankel function may be written as

x = -a, exp (27ri/3) (63)

where thc -a, are the roots of Eq. 55. In this case, the phase velocities of Eq. 54 are
complex and, as discussed in Ref. 20, can be interpreted as the mode phase velocity and
mode attenuation. We include this example to illustrate that the method of Eq. 54 can
be applied to complex as well as real x.

Phase-Integral Solution

If we substitute Eq. 51 into Eq. 41 and solve for Cm, we obtain

Cm = C 1 [ 1 - f-111 2/3 Z-2/3 X]-/
2  (64)

where

X = [3 P(n)/2]2/ 3 ir2/3  (65)

which for the case of Eq. 37 reduces to

X = [3(n - 1/4)/2]2/ 3  (66)

Here, we have included r2/3 as a factor of X in order to make Eq. 64 resemble Eq. 54.

We next examine the relationship between x and X. The first term of the
asymptotic expansion of Ai(-x) may be written as 21

Ai(-x) - r-1/2 x-1/4 cos (7r/4 - 23/2/3) (67)
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The zeros then satisfy

?r/4 - 20121 3 = nr (68)

The solution of Eq. 68 is

x, = r2 13[3(n - 1/4)/2]2/3 (69)

This is the same expression as Eq. 66. Thus, the phase-integral method gives phase
velocities based on the zeros of the first term of the asymptotic expansion of Ai(-x).
This result comes as no surprise since the phase-integral approximation in general is
often the same result as obtained by using the first term of the asymptotic expansion of
the exact normal-mode solution.

The values of Eq. 69 are given in Column 3 of Table 1. A comparison with the
exact zeros of Column 2 indicates a good approximation, which gets better with increas-
ing root number, as should be expected for asymptotic expansions. The phase velocities
based on Eq. 64 are shown in Fig. 2 as dashed curves, where they are almost indistin-
guishable from the solid curves derived from Eq. 54.

We can evaluate Eq. 44 for the group velocity, using Eq. 21 and 22 of Ref. 18.
The result is Eq. 57, with CP replaced by C,,,. The dashed curves of Fig. 3 present the
results of Eq. 57 evaluated at the phase velocity of Eq. 64 for the given frequency.
Again the results are almost indistinguishable from the solid curves, obtained by
evaluating Eq. 57 at the phase velocity of Eq. 54.

Equations 56 to 61 all hold for the phase-integral approach, with the x of mode
theory replaced by the x, of Eq. 69.

Reconciliation of Solutions

We note that the results of Eq. 54 and 64 agree when

x = X (70)

We satisfy Eq. 70 by solving for n in Eq. 66. The solution is

n = (2 xj3/2/3r) + 1/4 (71)

where xj is the jth root of Eq. 55. The values of Eq. 71 are given in Column 4 of
Table 1. Thus, the phase-integral method can be made exact by the use of nonintegral
values for mode number. We note also that the group velocity of ray theory, i.e., Eq.
44, also becomes exact because its equivalent, Eq 57, is evaluated at exact values of
phase velocity.

Despite the sundry admonitions about the applicability of ray theory in the
literature, we find in this case that the use of Eq. 71 leads to a ray-theory application
which is completely congruent to the normal-mode results for phase and group velocity.
The results are identical for all frequencies and can be applied to cases where the profile
parameters C1 or -y are complex as well. The importance of nonintegral n is discussed
in Section 4.
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RIGID-BOUNDARY-SURFACE DUCT

The rigid-boundary-surface duct is illustrated by profile B of Fig. 1, where the
free boundary of profile A, is replaced by a rigid boundary. The solutions are very
similar to those of profile A, with Eq. 55 replaced by

Ai'(-x) = 0 (72)

The roots of Eq. 72 are the negatives of the zeros of the Airy function derivative as
given in Column 4 of Table III of Ref. 19. Column 2 of Table 2 presents the first ten
zeros of Eq. 72.

Table 2. Zeros of Ai'(-x) and associated nonintegral mode
number.

Zero
Number Zero Asympt. Modified

j Approx. n

1 1.0188 1.1155 0.96822
2 3.2482 3.2616 1.99229
3 4.8201 4.8263 2.99565
4 6.1633 6.1671 3.99697
5 7.3722 7.3749 4.99770
6 8.4885 8.4905 5.99814
7 9.5354 9.5371 6.99837
8 10.5277 10.5290 7.99868
9 11.4751 11.4762 8.99885

10 12.3848 12.3857 9.99894

The solid curves of Fig. 4 are obtained from Eq. 54 and are the counterparts of
those of Fig. 2. Equation 56 gives the vertical asymptotes. The solid curves of Fig. 5 are
obtained from Eq. 57, and Eq. 58 to 61, 64, and 65 hold. Equation 66 is replaced by

X = [3(n - 3/4)/212/r / '

(73)
The counterparts of Eq. 67 to 69 are

Ai'(-x) - 7r-Yx4 cos (37r/4 - 2x2/3/3) (74)

3r/4 - 23/2/3 = nr (75)

and

x, = r 2/ 3 [3(n - 3/4)/2]2/3 (76)
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Figure 4. Phase velocity vs frequency for rigid-surface duct, compared for
normal-mode (solid line) and phase-integral (dashed line) computation.

This is the same expression as Eq. 73. Thus, the phase-integral method gives phase
velocities based on the zeros of the first term of the asymptotic expansion of Ai' (-x).

The values of Eq. 76 are given in Column 3 of Table 2. The phase velocities
based on Eq. 64 are shown in Fig. 4 as dashed curves. In contrast to Fig. 2, this
asymptotic solution clearly differs from the solid curve based on Eq. 54.

The dashed curves of Fig. 5 are obtained from Eq. 57, using the phase velocities
of Eq. 64. Equations 56 to 61 all hold for the phase-integral approach, with the x of
mode theory replaced by the x., of Eq. 76. The counterpart of Eq. 71 is

n = (2x 3/'2/3?r) + 3/4 (77)

where xi is the jth root of Eq. 72. The values of Eq. 77 are given in Column 4 of
Table 2. Again, the phase and group velocities of ray theory are made exact by the use
ot nonintegral values for mode number.
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Figure 5. Group velocity vs frequency for rigid-surface duct compared for
normal-mode (solid line) and phase-integral (dashed line) computation.

UNBOUNDED REFRACTIVE DUCT

The unbounded refractive duct is illustrated by profile C of Fig. 1. The axial
sound speed is C2, while the upper and lower gradients are -yl and -12, This notation is
consistent with the axis at the interface between layer 1 and layer 2.

Mode-Theory Solution

In this case, '0 of Eq. 10 is the principal quantity in the solution. We define
another dimensionless variable, y, as

Y = l0 (78)

From Eq. 30 and 31, the canonical eigenvalue equation may be written as

Gj(y,p) = Ai(-y) Ai'(-py) + pAi(-py) Ai'(-y) = 0 (79)

In this report and in many applications, the only p, of Eq. 16 is p,. In Eq. 79 and here-
after, we will drop the subscript on p, to simplify the notation. Our use of the variable y
will become apparent, when we deal with canonical eigenvalues of profile 4 in Section 4.

18



If we know y, we may use Eq. 13 to obtain the phase velocity

c, = c 2 [1 - I , 1'/ 3p y] - 1/2  (80)

Alternatively, we may use Eq. 16 and 80 to obtain

CP= C2 [1 - 2 /31 r2/3 1,10 12/ 3y]- 1/2  (81)

Consider now the case of the symmetric duct, i.e., p = 1. Here, Eq. 79
reduces to

G1(y,1) = 2Ai(-y) Ai'](-y) = 0 (82)

Thus, the roots of Eq. 79 are given by those of Eq. 55 for even modes and by those of
Eq. 72 for odd modes.

A computer routine was developed to solve Eq. 79 by Newton's method. The
procedure starts at p = 1 with a known zero of Ai(-y) or Ai' (-y). The value of p is
decreased by successive steps of Ap, and the solution of Eq. 79 is obtained for each step
by the iteration

Yi+, = y, + Gj(Yi)/(aG1/8y) I Y (83)

where

(aG1/Oy) I,, = -(p3 + 1)[Ai'(-y,) Ai'(-p2y,) - y1 Ai(-yi) Ai(-p2yi)] (84)

The initial estimate of y, is taken to be the solution of Eq. 79 for the previous values of
p. Once the iteration of Eq. 83 reaches the desired accuracy, the process is stopped, p is
decreased by Ap, and the iteration process is repeated.

We note that the solution of Eq. 79 for 0 < p < 1 suffices for all p. The
solution y of Eq. 79 for p-1 is related to the solution y of Eq. 79 for p by

y = p-y (85)

Thus, if p > 1, we take the solution y for p-' and then use Eq. 85 to determine 7, the
solution for p.

When p = 0, Eq. 79 reduces to

GI(y,O) = Ai(-y) Ai'(0) = 0 (86)

Thus, the solutions for p = 0 are given by Eq. 55.

Figure 6 presents the solutions of Eq. 79 as a function of p for the four smallest
roots, i.e., the first four modes. The horizontal lines are the zeros of Ai(-y). They serve
a double duty. This is the solution for all modes at p = 0 and for the even modes at
p = 1. The solution for odd modes at p = 1 are the zeros of Ai'(-y). Columns 2 and 4
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Figure 6. The canonical eigenvalues, y vs p, or the first four modes of
the unbounded refractive duct. Here, p is the cube root of the negative
of the ratio of axial gradients.

of Table 3 give the solutions of modes 1 and 2, respectively, for values of p at 0.05 incre-
ments from p = 1 to 0. The plots of Fig. 6 indicate that the solutions are extremely
well-behaved functions of p. Thus, linear or higher order interpolation could be used to
obtain very accurate values for arbitrary p from tabular values such as those of Table 3.
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Table 3. Eignevalues y, for the first two modes of an unbounded refractive
duct and associated nonintegral mode number.

Mode 1 Mode 2

Root Modified Root Modified

p y n y n

1.00 1.01879 0.93643 2.33811 2.01734
0.95 1.07100 0.93685 2.45472 2.01587
0.90 1.12574 0.93824 2.56867 2.01048
0.85 1.18295 0.94070 2.68156 2.00410
0.80 1.24254 0.94440 2.78946 1.99483
0.75 1.30436 0.94949 2.89295 1.98468
0.70 1.36823 0.95611 2.99201 1.97496
0.65 1.43393 0.96444 3.08688 1.96697
0.60 1.50120 0.97462 3.17792 1.96186
0.55 1.56975 0.98679 3.26554 1.96059
0.50 1.63928 1.00106 3.35012 1.96387
0.45 1.70949 1.01753 3.43199 1.97215
0.40 1.78009 1.03625 3.51143 1.98568
0.35 1.85083 1.05724 3.58870 2.00451
0.30 1.92148 1.08047 3.66402 2.02850
0.25 1.99187 1.10603 3.73761 2.05734
0.20 2.06189 1.13331 3.80968 2.09057
0.15 2.13148 1.16259 3.88048 2.12761
0.10 2.20066 1.19346 3.95025 2.16775
0.05 2.26948 1.22561 4.01930 2.21017
0.00 2.33811 1.25868 4.08795 2.25395

There are two distinct physical configurations which correspond to p = 0. The
first is 7y0 = 0, which arises from an isospeed half space above the axis. The second is

72 = oo, which arises from the limit of a steep positive gradient below the axis. Although
the mathematical eigenvalues are the same for both configurations, the physical results
are quite different. For -yj0 = 0, the phase velocity of Eq. 81 reduces to C2, the axial
sound speed. For 72 = oo, Eq. 81 depends in the usual manner on C2, f, 'Y10, and the
zeros of Ai(-y).

It is not convenient at this point to present a numerical example of phase
velocity vs frequency as was done in Fig. 2 and 4. All numerical examples will be

deferred to Section 3. Equations 56 to 61 hold, with -yl, x, and C1 replaced by '-10, y, and
C2, respectively.
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Phase-Integral Solution

For this profile, the phase-integral counterpart of Eq. 64 may be written as

Cm = C 2 [1 - f-2/
3 

/10 2/3 7r-2/3 y1 - 1 / 2  (87)

where

Y = [3P(n)/2 213 i2/3(1 - _10/72) - 2/ 3  (88)

From Eq. 38 and 16, this may be expressed as

Y = [3(n - 1/2)/2]1/3 X2/ 3(1 + P3)-2/3 (89)

Equations 56 to 61 hold, with "I1, x, CP, and C1 replaced by -110, Y, Cm, and C2,
respectively.

Some of the properties for the group velocities of ray and mode theory can be
associated with the analysis of Ref. 22 for general classes of refractive ducts. From
Eq. 80 of Ref. 22

L(Cg) = Ca (90)

where L is the limit as Cm or C, --- Ca, and C. is the axial sound speed. As f--. oo, Cm in
Eq. 87 or C. in Eq. 80 --. C2, and C. of Eq. 57 approaches Ca = C2. Thus, Eq. 90 is
satisfied.

Profile class C of Fig. 1 falls under the class of Ref. 22 for which the slopes at
the axis are finite but not zero. For this class, Eq. 90 of Ref. 22 applies and is

L(dCg/C,) = 1/3 (91)

If we differentiate the C2 counterpart of Eq. 57 with respect to CP, we obtain

dCg/dC = C/C, - 2CP,/3C2 (92)

The limit of this as f--. oo and CP and Cg - C2 is

dCg/dC = 1 - 2/3 = 1/3 (93)

Thus, Eq. 91 is satisfied.
We can also explain the result of Eq. 58 as the phase velocity goes to infinity.

Section III B.2.f. of Ref. 23 discusses how ray theory range varies as the phase velocity
goes to infinity. It demonstrates that the range is infinite if there is no horizontal
asymptote for the sound-speed profile. It is constant if there is a horizontal asymptote
at infinite depth, and is zero if there is a horizontal asymptote at finite depth. Thus, R
for our profile is zero in the limit because of the horizontal asymptotes of Eq. 5 and 6.
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Since T is not zero for this limit, the group velocity goes to zero. Thus, the result of
Eq. 58 is associated with the horizontal asymptotes of the sound-speed profile model.

We next examine the relationship between Eq. 87 and Eq. 80. For this purpose,
we express Eq. 87 as

C. = C2[1 - f- 2 3 H 2 3 7r-2/ 3 7]-1/2 (94)
where

H = [( + - )/2- (95)

and

Y = [3(n -1/2)/412/3 /3  (96)

Equations 94 and 96 are equivalent to Eq. 87 and 89 and are obtained by algebraic
manipulation. The quantity H of Eq. 95 is the harmonic mean of the gradients.

We now consider a symmetric duct with gradients -110 and -110. The solutions for
a symmetric duct are given by Eq. 82. Consider first the even modes. Here, Eq. 69
applies with

yj = 2/3[3( - 1/4)/2]2/3 (97)

Here, j is the root number which equals n/2. Equation 97 may be written as

Y,12 = V 2/3[3(2n - 1/2)/4]2/ 3  (98)

Thus, for even modes, Eq. 98 is the same as Eq. 96.

Consider next the odd modes. Here, Eq. 76 applies with

yj = r2/31[3y - 3/4)/2]2/3 (99)

Here, j, the root number, equals (n + 1)/2 for odd modes. Equation 99 may be written
as

Y n- )/2 = r2/ 313(n - 1/2)/4]2/ (100)

Thus, for odd modes, Eq. 100 is the same as Eq. 96.

For the refractive duct C of Fig. 1, the phase-integral method corresponds to the
use of the first term in the asymptotic expansion of Ai(-y) and Ai'(-y) for a symmetric
duct with a slope which is the harmonic mean of the absolute values of the axial slope.
Note that this is an interpretation of the method; it implies nothing as to the accuracy of
the method.
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Reconciliation of Solutions

If we equate Eq. 89 to Eq. 81 and solve for n, we obtain

n = 2y312(1 + p3)/31r + 1/2 (101)

Where vis the nth root of Eq. 79. In the special case of a symmetric duct, Eq. 101 can
be expressed in closed form. In the case of even modes, Eq. 101 reduces to

n = 4 x' 1
32/37r + 1/2 (102)

We note that Eq. 102 is just twice the result of Eq. 71 for the free-boundary-surface
duct. In the case of odd modes, Eq. 101 reduces to

n = 4 x'j3/ 2/3r + 1/2 (103)

This result is twice the result of Eq. 77 minus 1.

The results of Eq. 103 for odd modes are given in Column 2 of Table 4. The
results of Eq. 102 for even modes are given in Column 4. With the exception of mode 1,
the modified values of n are not significantly different from integral values.

Table 4. Nonintegral mode numbers for a symmetric un-
bounded refractive duct.

Odd Mode Modified Even Mode Modified
Number n Number n

1 0.93643 2 2.01734
3 2.98458 4 4.00790
5 4.99131 6 6.00508
7 6.99396 8 8.00374
9 8.99537 10 10.00296

11 10.99625 12 12.00244
13 12.99685 14 14.00208
15 14.99729 16 16.00182
17 16.99761 18 18.00160
19 18.99787 20 20.00144

Columns 3 and 5 of Table 3 give the results of Eq. 101 for modes 1 and 2,
respectively. In the case of mode 1, the value of modified n increases monotonically
from 0.93643 for p = I to 1.25868 for p = 0. The phase integral approximation for the
asymmetric duct for p greater than about 0.33 is no more inaccurate than it is for p = 1.

In the case of mode 2, the modified n decreases from 2.01734 for p = I and
forms a minimum of about 1.960 at about p = 0.55. It then increases monotonically to

24



2.25395 for p = 0. Here, the difference between integral and nonintegral values is less
than ±0.04 for p greater than about 0.33.

We conclude then that the phase-integral method is a reasonably good
approximation to the asymmetric duct. For mode 1, the difference between modified
and integral n is less than 0.064 for values of p greater than 0.33. The largest difference
is 0.259, occurring at p = 0. For mode 2, the differences are less than ±0.039 for values
of p greater than 0.33. The largest difference is 0.254, occurring at p = 0.

We are indebted to a JASA reviewer for calling our attention to Ref. 12 in which
Tolstoy and Clay analyze the symmetric refractive duct. They assess the accuracy of the
phase-integral approximation (referred to by them as the WKB or Bohr-Sommerfeld
equation) by comparing it with the exact normal-mode solution. They also demonstrate
that the phase-integral approximation corresponds to the use of the first term of the
asymptotic expansion of the exact normal-mode solution. The Ref. 12 analysis is
couched in terms of the customary WKB approach without regard for ray theory and
illustrates a reviewer's observation that the phase-integral approximations of all the
examples of Section 2 could be obtained without computing a single ray. This is indeed
true, because in these examples, Eq. 34 can be solved for phase velocity in closed form.
The importance of the discussion of the phase-integral method in Section 1 for more
complicated profiles is presented at the end of Section 4.

SECTION 3. APPLICATION TO DOUBLE DUCTS

This section applies the results of Section 2 for the unbounded refractive duct to
the double-duct profile of Ref. 1 to 3 and 5. It also illustrates how the canonical
eigenvalues of Fig. 6 are translated to phase velocity vs frequency plots for two specific
refractive ducts.

Figure 7, taken from Ref. 5, presents the double-duct sound-speed profile. It
consists of an upper refractive duct bounded above by the surface and overlying a lower
refractive duct. The lower refractive duct is bounded below by a negative-gradient half
space.

Figure 8, taken from Ref. 5, presents phase velocity vs frequency for the profile
of Fig. 7. The circles represent the mode 2 and 3 solutions for the double-duct profile as
obtained by evaluating the eigenvalues at intervals of 0.5 Hz. The dashed curve is the
phase-integral result of Eq. 87 and 89, evaluated for mode 1 of the upper duct. The
solid curve is the phase-integral result evaluated for mode 2 of the lower duct. Observe
that the difference between the phase velocities of mode 3 and mode 2 forms a min-
imum at about 53 Hz. We refer to this condition as a critical frequency because at the
critical frequencies the coupling between the upper and lower ducts is strong. Now the
critical frequencies are approximated by the intersections of the phase-integral curves for
the two individual ducts. In this case, the intersection labeled crossing B at about 60 Hz
is the approximation to the critical frequency at about 53 Hz.
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Figure 7. The double-duct sound-speed profile used in the analysis of
Ref. 5.
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Figure 8. Phase velocity vs frequency for a double duct compared to
phase-integral results for the two single ducts.

When Fig. 8 was first generated some five years ago, we became interested in
developing a method to improve the accuracy of the phase-integral method. It is
important to obtain an accurate estimate, because the evaluation of double ducts by
mode theory is a much more laborious process than to apply the phase-integral method
to help zero in on the critical frequency regions.

The first step in this investigation was to compare the normal-mode results for
the single unbounded ducts with the phase-integral results. Figure 9 gives the results
for modes 1 to 4 of the lower duct and for modes 1 and 2 of the upper duct. Again, the
curves are the phase-integral results, whereas the circles were obtained by evaluating the
normal-mode solution at 2-Hz increments in the standard manner.

We drew two conclusions from Fig. 9. First, there were significant differences
between phase-integral and mode theory for single ducts, and second, the single-duct
mode results gave an improved estimate of critical frequency. These results were what
prompted us to develop the modified phase-integral approach.
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Figure 9. Phase velocity vs frequency for the two single unbounded ducts.
The circles are normal-mode evaluations, while the curves are the ray-
theory phase-integral results. The curves are identified by mode number
and ducts, U for upper and L for lower duct.

We next turn to the modified phase-integral results. The first step is to deter-
mine the canonical eigenvalues of Eq. 79 for the two ducts. The value of p for the upper
and lower duct was 1.684533 and the value for the lower duct was 1.239280. Table 5
presents a summary of the results. Columns 2 and 4 give the roots of Eq. 79 for the
upper and lower ducts, respectively. Columns 3 and 5 are the results of Eq. 101
evaluated for these roots.
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Table 5. Eignevalues, y, and nonintegral mode number for the two asym-
metric unbounded refractive ducts.

Upper Duct Lower Duct

Mode Modified Modified
Number y n y n

1 0.532080 0.976059 0.803585 0.943811
2 1.123907 1.961473 1.806723 1.996193
3 1.600740 2.984143 2.550366 3.009308
4 2.013586 4.004700 3.176687 3.988285

The entire approach was tested by evaluating the phase-integral expressions for
the modified values of n. The set of curves was plotted to the scale of Fig. 9. We were
most pleased to find that this set of curves passed through the centers of the circles of
Fig. 9. The circles of Fig. 9 were determined by a standard normal-mode approach in
which the phase velocity is determined by iterating the eigenvalue equation for each
frequency and each mode. Thus, a given mode required some 70 sets of iterations to
cover the frequency band from 0 to 140 Hz. In contrast, the solution for a given mode
of Eq. 81 requires one set of iterations of the canonical eigenvalue equation, and this
solution applies to all frequencies, not just those of Fig. 9. Also, the agreement of the
modified phase-integral results with the mode solution of Fig. 9 verified not only the
modified phase-integral results, but also the normal-mode approach of Eq. 79 and 81,
because the modified phase-integral results are based on the solutions of Eq. 79.

We are now in a position to answer a question about Fig. 9 which could not be
answered when it was first generated. Observe the larger displacements between ray and
mode theory for the upper duct as compared to the lower duct. We initially attributed
this to the fact that the p for the upper duct was larger than that for the lower duct.
However, this conclusion was in error. Consider columns 3 and 5 of Table 5 for mode 1.
Here, the n for the upper duct lies closer to 1 than does the n for the lower duct, yet the
difference between ray and mode theory is larger for the upper duct. The answer is that
I - 11/3, as well as other terms, appears as a factor in dC/dn. The Im 012/3 factor is

about 7.9 times larger for the upper duct than for the lower duct. This provides the
rationale for larger displacements for the upper duct.

There is another way to assess the multiplicative factors of dCp/dn. The
difference between integral and modified n for the upper duct is 0.024. The
corresponding difference in phase velocity should be roughly about 2.4% of the
difference in phase velocity between mode 2 and mode 1. One may scale the difference
between mode 2 and mode 1 in Fig. 9 and verify that this is a fair approximation. Thus,
the error in n should not be regarded as absolute but can be scaled by the phase-velocity
difference between modes to estimate the effect of the error in n on phase velocity.

29



We can now address a feature of Fig. 2 and 4, which we passed over in the
previous discussion. The reader may have wondered why we were concerned with
modified n when the differences between the solid and dashed curves of Fig. 2 and 4
were nil. The answer is that the curves were based on a very small value of J I = 0.02,
with a relatively small displacement between modes. Thus, one should not judge the
importance of modified n on Fig. 2 and 4, but rather on Fig. 9, which represents an
application to double-duct profiles with much steeper gradients and large displacements
between modes.

Figure 10 is the counterpart of Fig. 8, in which the phase-integral results are
replaced by the modified phase-integral results. We see that crossing B of the modified
phase-integral method provides a much better estimate of the critical frequency than
does the estimate of Fig. 8.
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Figure 10. Phase velocity vs frequency for a double duct compared to the
modified phase-integral results for the two single ducts.
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Figure 11 is the counterpart of Fig. 9 for the group velocity. The circles
represent the group velocity as evaluated by conventional mode theory for single ducts.
The curves were obtained by evaluating R/T for the phase velocities of Eq. 87. Rather
than implement a special normal-mode program, we approximated profile C of Fig. 1 by
profile 4 and displaced the surface sound speed so that it was well removed from the
axial sound speed. However, at frequencies below about 20 Hz for mode 1 of the upper
duct, the effect of the surface begins to show up in Fig. 11 and should be ignored.
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Figure 11. Group velocity vs frequency for the two single unbounded
ducts. The circles are normal-mode evaluations, while the curves are
obtained from the ray-theory phase-integral results. The curves are
identified by mode number and duct, U for upper and L for lower duct.

For the present report we tried two different approaches to duplicating the
normal-mode results of Fig. 11. The first approach was to evaluate Eq. 57 at the phase
velocities given by Eq. 80 and the roots of Eq. 79. The second approach was to evaluate
Eq. 57 at the phase velocities given by Eq. 87 to 89 for the values of n given by Eq. 101.
The results of both approaches agreed with each other and were in agreement also with
the circles of Fig. 11.
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This step provided a numerical verification that the ray-theory results for group
velocity are exact whenever the phase-integral results for phase velocity are made exact
through the use of nonintegral mode numbers. We will not present the group-velocity
results for the double duct as we did for the phase velocity in Fig. 10. The group-
velocity behavior near a critical frequency is too involved to deal with here but is
presented in Ref. 5.

SECTION 4. CANONICAL EIGENVALUE FORMULATION

Profile 4 of Fig. 1 represents the profile class which first leads to the canonical
eigenvalue formulation in two variables. This profile was the logical extension of pro-
file C of Fig. 1, in which the refractive duct is bounded above by a free surface. The
boundary condition is given by Eq. 23 and the interface conditions by Eq. 18 and 22,
with i = 1 and E2 = 0.

The 3 x 3 eigenvalue matrix is expanded and with the use of Eq. 53 and 78 may
be written as

G(xy,p) = Ai(-x)G2 - Bi(-x)G1 = 0 (104)

where G, is given by Eq. 79 and

G 2 = Bi(-y) Ai'(-p ) + pAi(-p ) Bi'(-y) (105)

We will not present the solution of Eq. 104 here. It is solved by choosing some
fixed value of p and then iterating to obtain a family of curves of y vs x for the fixed p.
Each curve corresponds to a mode. We see that Eq. 104 contains two mathematical
variables, x and y, and one profile variable, p. This can be thought of as an extension to
one more mathematical variable as compared to the simpler canonical eigenvalue
formulations of Eq. 55, 72, or 79.

Our next step in the formulation is to relate the frequency to the variables. The
frequency is not independent of them as it is for the one mathematical variable case.
We note that Eq. 54 and 81 hold. If we equate these expressions to eliminate C. and
solve for frequency, we obtain

f = (Y - x)312 [(C1/C2)2 - 11-/ 2  1 -  (106)

The first factor in Eq. 106 can be evaluated as a function of x by using the
solutions of the canonical eigenvalue equation. We refer to a plot of (' - x) 3/2 vs x as a
canonical frequency plot. From this plot, the frequency may be obtained by a simple
scale factor obtained by evaluating the remaining factors of Eq. 106 for the specific
desired profile parameters. Once the frequency has been evaluated from Eq. 106, Eq. 54
may be used to determine the phase velocity as a function of frequency.

Reference 6 extends the method to any piecewise continuous profile of the form
of Eq. 1. The arguments of the Airy functions in the eigenvalue equation can be written
as linear combinations of x and y with coefficients that are independent off, C,, C1, C 2,
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and -11 and depend on the remaining profile parameters. Canonical eigenvalue solutions
have been generated for one and two-layer bounded profiles. Reference 7 presents
results for the one-layer bounded profiles.

Although the canonical eigenvalue approach can be applied to profiles in which
the deepest layer is unbounded, as, for example, profile 4 of Fig. 1, there is a problem
which does not arise for bounded profiles. The canonical eigenvalue approach gives two
sets of solutions. The first set applies for C1 > C2, as illustrated by profile 4 of Fig. 1.
The second set applies for C1 < C2, as illustrated by the mirror image of profile 4. The
problem is that the second set of solutions is spurious and incorrect. The reason is that
the eigenvalue formulation is predicated on Ai as the solution in the unbounded layer
with positive slope. However, the second set of solutions corresponds to an unbounded
layer with negative slope, which involves the modified Hankel function h2 as considered
in the discussions of Eq. 27. Thus, in the case of an unbounded profile, one must treat
one eigenvalue equation for C1 > C2 and a second eigenvalue equation for C1 < C2. In
the case of bounded profiles, one eigenvalue equation suffices for both conditions. This
complication is the reason for deferring the presentation of the solution for unbounded
profiles until after the solution for bounded profiles has been presented.

Profile 4 is useful in illustrating why we provided in Section 1 a full-blown
ray-theory treatment of the phase integral method. Here, as with most sound-speed
profiles, one cannot solve the phase-integral equation for phase velocity in closed form.
Equations 42 and 43 provide for the iterative solution. Indeed, the formulation of Eq.
34 allows one to evaluate the phase velocity for any sound-speed profile, provided that
one has the ray-theory solutions for T and R.

There is a fundamental problem in the standard ray-theory approach to profile 4.
This is a 7r/2 jump in phase for rays which just reflect from the surface as compared to
those which form a refractive apex just below the surface. The modified ray theory of
Ref. 16 solves this problem. In this treatment, R and T are functions of f, and the phase
shift associated with the surface is a continuous function of phase velocity. Section 1
provides the fundamental background for an article in preparation which incorporates
the modified ray theory of Ref. 16 into the phase-integral method and compares these
solutions with those of mode theory.

We are now in a position to explain our interest in nonintegral mode numbers.
The use of nonintegral mode numbers represents an empirical process which has no
interpretation in terms of wave theory. Moreover, the curves of Fig. 10 could have been
generated directly from the canonical eigenvalues, without any use of nonintegral mode
numbers. The only advantage in Fig. 10 to nonintegral mode numbers is that we could
use the same computer routines as used in Fig. 8 to generate the phase-integral results
for integral values of n. The advantage of nonintegral n comes into play for more
complicated profiles.

For example, the first step in the phase-integral approach to profile 4 is to
determine the nonintegral values of n for the refractive duct with no surface. These
values of n are then used in the phase-integral formulation for the duct with surface
boundary. At high frequencies, the eigenvalues of profile 4 go to those of the
unbounded refractive duct. Thus, the use of nonintegral n guarantees that at high
frequencies the phase-integral solution for the phase velocity goes to the exact results of
mode theory.
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SECTION 5. SUMMARY

This report has reviewed the normal-mode and phase-integral results for three
simple ducts. Some of the new results obtained follow:

1. This report presents and compares the normal-mode and phase-integral so-
lutions for the asymmetric refractive duct. The phase-integral solution for the asym-
metric refractive duct is shown to be the phase-integral solution for a refractive duct with
gradients which are the harmonic mean of the absolute value of those of the asymmetric
duct.

2. The phase-velocity solutions of the ray-theory implementation of the phase
integral can be brought into complete congruence with the corresponding results of exact
normal-mode theory by introducing nonintegral mode numbers in the phase-integral
formulation. The use of nonintegral mode numbers is an empirical approach which has
no interpretation in terms of wave theory. However, their use will improve the accuracy
of the phase-integral method for more complicated ducts, where the high-frequency limit
approaches that of one of the simple ducts.

3. Wherever the phase velocities of the phase-integral method and
normal-mode theory are congruent, so are the group velocities. When this occurs, the
group velocities of both mode and ray theory are given by R/T.

4. The results for the asymmetric unbounded refractive ducts are compared
with normal-mode results for a double-duct profile with two refractive ducts. The
normal-mode result for a single duct was more comparable to the normal-mode result
for the double duct than it was to the phase-integral approximation for the single duct.

The concept of canonical eigenvalues has been introduced. In this approach, the
eigenvalue equation is written in terms of the dimensionless mathematical variables x
and y, where x is the negative of the Airy function argument at the surface (upper
interface of layer 1) and y is the negative of the Airy function argument at the bottom of
layer 1. The eigenvalue equation may contain other dimensionless parameters which are
functions of the sound-speed profile. The positive-gradient half space bounded above by
a free surface provides the simplest example. Here, the canonical eigenvalues x are
discrete and are given by the zeros of the Airy function Ai(-x). From these canonical
eigenvalues, one uses Eq. 54 to generate the customary eigenvalues, C, as a function of
frequency, and the profile parameters C, and -yi. The eigenvalues are referred to as
canonical because they apply to an entire class of sound-speed profile rather than to a
single profile. The solution for the positive gradient half space bounded above by a rigid
surface is similar but with the x given by the zeros of Ai'(-x).

The unbounded refractive duct provides another simple example. Here, the
canonical eigenvalue equation contains the variable y as a function of p, defined as the
cube root of the negative of the ratio of axial gradients. Here, y is solved for the given
value of p and Eq. 81 is used to generate CP, in terms of frequency and profile
parameters. Here, the canonical eigenvalues apply to the class of unbounded refractive
profiles with given value of p.

The more general case of two mathematical variables is illustrated by the
refractive duct bounded above by a rigid surface. Here, the canonical eigenvalues are
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not discrete values of x or y but consist of curves of y versus x for a fixed value of p. In
contrast to the simple ducts previously treated, the frequency is no longer an indepen-
dent variable. Equation 106 gives the frequency as a function of x and y and the profile
parameters C1, C2, and -y,. Either Eq. 54 or 81 may now be used to generate C, as a
function of frequency for the profile parameters and the values of x or y.

The advantages of the canonical method, illustrated in this report, are the
application to a class of profiles rather than to a single profile and the reduction by four
of the number of parameters in the eigenvalue equation. Other advantages are
presented in Ref. 5.
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